ZnII(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism
نویسندگان
چکیده
Mutations in the metalloprotein Cu,Zn-superoxide dismutase (SOD1) cause approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease for which effective therapeutics do not yet exist. Transgenic rodent models based on over-expression of mutant SOD1 have been developed and these have provided opportunity to test new therapeutic strategies and to study the mechanisms of mutant SOD1 toxicity. Although the mechanisms of mutant SOD1 toxicity are yet to be fully elucidated, incorrect or incomplete metallation of SOD1 confers abnormal folding, aggregation and biochemical properties, and improving the metallation state of SOD1 provides a viable therapeutic option. The therapeutic effects of delivering copper (Cu) to mutant SOD1 have been demonstrated recently. The aim of the current study was to determine if delivery of zinc (Zn) to SOD1 was also therapeutic. To investigate this, SOD1G37R mice were treated with the metal complex diacetyl-bis(4-methylthiosemicarbazonato)zinc(II) [Zn(II)(atsm)]. Treatment resulted in an improvement in locomotor function and survival of the mice. However, biochemical analysis of spinal cord tissue collected from the mice revealed that the treatment did not increase overall Zn levels in the spinal cord nor the Zn content of SOD1. In contrast, overall levels of Cu in the spinal cord were elevated in the Zn(II)(atsm)-treated SOD1G37R mice and the Cu content of SOD1 was also elevated. Further experiments demonstrated transmetallation of Zn(II)(atsm) in the presence of Cu to form the Cu-analogue Cu(II)(atsm), indicating that the observed therapeutic effects for Zn(II)(atsm) in SOD1G37R mice may in fact be due to in vivo transmetallation and subsequent delivery of Cu.
منابع مشابه
Cu(atsm) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in an Amyotrophic Lateral Sclerosis Mouse Model
Background: Cu(atsm) [(diacetylbis(N(4)methylthiosemicarbazonato) copper(II)] was orally administrated to transgenic SOD1 mice. Results: Treatment significantly prolonged lifespan with preservation of motor neurons. Reduced protein oxidation, attenuated astrocyte and microglial activation also resulted from treatment. Conclusion: Cu(atsm) is neuroprotective in this model even when treatment beg...
متن کاملOral Treatment with Cu[superscript II](atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper II [Cu II (atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically...
متن کاملOral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis.
Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxicall...
متن کاملDiacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model.
Amyotrophic lateral sclerosis (ALS) is a progressive paralyzing disease characterized by tissue oxidative damage and motor neuron degeneration. This study investigated the in vivo effect of diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)), which is an orally bioavailable, blood-brain barrier-permeable complex. In vitro the compound inhibits the action of peroxynitrite on Cu,Z...
متن کاملMutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis
Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurobiology of Disease
دوره 81 شماره
صفحات -
تاریخ انتشار 2015